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AIlIInct-Etfec:tive mechanical properties for large repetitive frame-like structures are derived using
straight forward combinations of streqtb of material orthoaonal transfonnation techniques. Once the
actual struetllre is identified symmetry coDSidcrations are nsed in order to ideDtify its iDdepeDdent property
constants.1be actual values of these constants are constructed according to a building block format wbic:b
is carried out in the three consecutive steps: (a) All basic planar lattices are identified (b) elective
continuum properties are derived for each of these planar basic grids using matrix structural analysis
methods and (c) orthogonal transformations are finally used to determine the contribution of each basic set
to the overaU elective continuum properties of the structure.

I. INTRODUCTION
In recent two papers [l, 2] we introduced a straightforward construction procedure in order to
derive continuum equivalence of discrete pin jointed repetitive structures. Broadly speakiq we
outlined the method as follows: Once the actual structure was specified symmetry con
siderations were used in order to identify its independent property constants. The actual values
of these constants were constructed in accordance with a building block approach consisting of
the following three consecutive steps: (a) all sets of parallel members were identified, (b)
unidirectional "effective continuum" properties were derived for each of these sets and (c)
orthogonal transformations were finally used to determine the contribution of each set to the
overall effective continuum properties of the structure. Here the terD\ properties is pneral and
includes mechanical (stiffnesses), thermal (coefficients of thermal expansions) and 'material
densities. The method was then applied to a variety of structures.

In the present paper we extend the analysis of[1,2] in order to derive the effective
properties of rigid-jointed (frame-like) repetitive structures. This differs substantia1ly from the
truss-like structures in that we here include the influence of inplane bendina rigidities to the
structure. The construction procedure will differ in that the rod's unidirectional properties will
no longer be adequate to derive the overall properties. The fact that the individual rod in a
rigid-jointed array can resist in plane bending dictates that the smallest sub-ceU of the structure
which will be used for the building block approach will no longer be unidirectional and thus
have to be two-dimensional substructures. Here the most identifiable basic two dimensional
frame structures are the (00, 9(0) and (00, ± 60") lay ups. Effective properties for the sub-ceUs
will be constructed using the direct analysis method which is also known by the matrix
structural analysis method (see, for example [3-5». This method, which uses simple and
straightforward strength of material techniques, constitutes two-dimensional generalization of
the one-dimensional area weighted properties approach of[1, 2]. The derived effective proper
ties for sucb substructures will then be used in a building block format in order to derive the
effective properties of more complicated two and three-dimensional structures. This last step
will be done by employing the orthogonal transformation. In summary we thus outline the
procedure of constructing effective properties for frame-like repetitive structures as foUows.
Once the actual structure is identified symmetry considerations are used in order to identify its
independent property constants. The actual values of these constants are constructed according
to a building block format which is carried out in the three consecutive 'Steps: (a) all basic
planar lattices are identified (b) effective continuum properties are derived for each of these
planar basic grids. Here a representative repeating cell is isolated and studied by the direct

tPresently on leave, Yarmouk University,lrbid.lordan.
*Presently at the Department of Orthopaedic Surgery, Giannestras Biomechanics Laboratory. Univenity of Cincinnati,

U.S.A.



976 A. H. NAYFEH and M. S. HEFZY

metbod noting tbat tbe effect of the joints' rigidity is taken into consideration and (c) orthogonal
transformations are finally used to determine tbe contribution of each basic set to tbe overall
effective continuum properties of the structure.

Since the inclusion of bending rigidities do not inftuence the thermal expansion of tbe
structure, the thermal expansion properties derived inO, 2J for the truss are identical to tbose of
corresponding frame. Accordingly in what follows we concentrate on deriving the elastic
properties of the frame structure.

2. ORTHOGONAL TRANSFORMATIONS

As was pointed out earlier tbe actual values of the total structure's effective continuum
properties are determined from the individual contribution of each two-dimensional subset. The
individual subsets contribution of each two-dimensional subset. The individual subsets con
tribution is obtained by a three-dimensional coordinate transformation. Before we proceed to
describe the transformation. however, we shall first state the relevant stress-strain relations of
elastic bodies.

The stress-strain relations for a general linear elastic body are written in the compact form

(1'ij =Cjj/clEIcI, i,i.k,1 =1,2.3, (1)

where (1'jj and Eld are tbe components of tbe stesss and strain tensors, respectively and C jjlcl are
the stifness tensor of the solid.

For future format referen<:es we shall rewrite equation (l) in its expanded form

(1'11 CIlIl Clln Cm3 CIl23 Cm3 CIl12 Ell

(1'22 Cnll C m2 C2m Cn23 Cnl3 C2212 E22

(1'33 Cml Cm2 Cm3 Cm3 C m3 C3312 E33
(2)=

(1'23 Cml C 2322 Cm3 C 2323 C23l3 Cm2 E23

(1'13 Cl31l Cl3n CIl33 C m3 CIl13 CI312 En

(1'12 Cml Clm Clm CIW CI2l3 CI212 EI2

Since Cjj/cl is a fourtb-order tensor it obeys the transformationO, 6. 7J

where

ax'·a _ r

fljj- ax/

(3)

(4)

are components of tbe orthogonal transformation tensor which transforms the unprimed to tbe
primed coordinates. Accordiqly. /3/J is the cosine of the aqle between the xi and the XI axis.

The relation (3) hold equally well for either continuous or discrete structures. The numerical
values of the appropriate C/J/cI entries will depend. however. upon the specific structure under
consideration. Since we are interested in analyzing frame-type structures that are constructed
from smaller subsets, it is expected tbat each subset will contribute to its overall properties.

If a structure has n different subsets then equation (3) can be written for each subset m,
m = 1,2, ... , n as

(5)

Once the direction cosines of each subset are identified the sum over all of these subsets
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yield the final properties
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(6)

3. BASIC PLANAR GRIDS

We shall use the "direct method" to find the properties of the equivalent continuum of two
basic planar grids. This approach is the reverse of that used by McCormick[8), McHenry[9) and
Hrennikotf[lO), who describe a procedure for modeling problems in plane stress analysis with
one-dimensional elements.

The main idea behind the direct method is to equate the displacements of the nodes of the
model to the displacements of the comers of the continuum plate element under the same
loading conditions. The sign convention for the displacement and stress resultants used in the
present study are shown in sketch 1(a, b).

(a> (0°, W> layup
We consider a plane network which is formed from a large number of orthogonally

intersecting beams rigidly jointed at their intersections as shown in Fig. 1. The beams are

a·The Beam E1emenl ill the SiaIIc·Layer Grids.

b-EquiYalenl Plate Sip Convention

Sketch J. Sign convention for the displacements in the equivalent continuum plate model.

N.. ",

Fig. I. The (0". 90") lattice.
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assumed to be identical, each having tbe length L, tbe cross-sectional area A, the Youap
modulas E and the moments of innertia I, and Iz around the Y and Z axis (principal axes),
respectively. The deformation of each joint is described by the displacements u, " and w in the
X.. Xz and Xl directions, respectively and by the rotations 8%1> 8%z and 8%3 around the axis X..
Xz and Xl, respectively. Here the rotations are considered to be positive in the counterclock
wise direction.

Using symmetry arauements reveal that this model is ortbotropic and that a 90" rotation in
its plane will DOt alter its bebavior[ll). These conditions reduce its aeneral stress-strain
relations (1) to

Cllt CIl22 0 0 0 0
CII22 CIlIl 0 0 0 0

0 0 0 0 0 0
[CI/*I] = 0 0 0 Cuu 0 0

0 0 0 0 Cl)Il 0
0 0 0 0 0 CI2IZ

(7)

whicb bas the four independent constants CIlII> CIl22, CUB and Cl2lz•

The actual values of these constants are derived using the direct method of analysis. This
consists of isolatiq the representative repeatiq cen, Fig. 2(a), loading it at its nodes and
equatiq the displacements of these nodes to the displacements of the edges of the equivalent
continuum plate under the same loadina conditions. The appropriate loading conditions for
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Figs. 2(a~).
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Fia. 2. The loading conditions of the representative repeating cell for the (0", 90") layup used to determine
the stiffness coe8ic:ients of the equivalent contmuum.

calculating CUll and Clln are shown in Figs. 2(b. c), those pertaining to calculating CI2t2 are
shown in Fig. 2(d~ e) and finally those used in calculating Cm3 are shown in Figs. 2(f-h). In the
first and second loading conditions, we are dealing only with the "in-plane" displacements of
the lattice; while in the third loading condition we are calculating the "off-plane" displacement.

Since each member is shared by two neighboring cells. its effective cross sectional area and
moments of inertia must be half of the corresponding values in the original lattice. Under the
present loading conditions, matrix structural methods [3] are utilized to solve for the displac
ments and rotations of each individual node. Specifically for Fig. 2(b), we obtain

(Sa)

(8b)

and from Fig. 2(d). we get

(9a)

(9b)

Similarly. the displacement in Fig. 2(h) is found to be

(10)

Figures 2(c, e.t) display the equivalent square continuum element of side length L and thickness
h subjected to normal stresses, 0'2, in-plane shearing stresses, 1'13. respectively. The displace
ments of the plate element due to the normal stress 0'2 are

C> _ 0'2LII•
°2 - E. ' (11)
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and the one due to the in-plane shearing stress T12. is

while the displacement due the off-plane shearing stress TI) is given as

8 = _ TJ)L

G13

(12)

(13)

where E, is the effective modulus of elasticity of the equivalent orthotropic continuum in the
XI and the X2 direction. P, is the elective Poisson's ratio of the contiauum between the XI and
X2 direction. GI2 is the in-plane shear modulus and G13 is the off-plane shear modulus. The
relations between C/J/d of eqn (7) and Elt Pit GI2 and G13 are

C
E, = CIIII(1- ",2), ", =~C

1111
(14a)

(14b)

By equating the displacements of the plate element with the correspondiq displacements of the
representative unit ceO wbiJe insuriaa that the total force on the unit ceO equals the total force
on the plate element for each Ioadina condition yields

AE
CII22 = 0 (lSa)CIIII = Lh'

6£l (1Sh)Clm =Llh

3£l (1Sc)CI313 = Ll {

(b) (0". ± 60" fa'lipS)
For the (0, ± 60") layup of Fig. 3, we shaD assume that all members are identical and have

the same geometrical and material properties L, A, 1.,. 1: and E. The isotropic nature of the (0,
± 60") confiauration (see [2, IIn dictates additional restrictions on the stiffnesses coefficients of

x,

Fig. 3. (0'. :!: 60") layup.
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the equivalent continuum. The appropriate property matrix is

CIIII CII22 0 0 0 0
CII22 CIIII 0 0 0 0

[C1jtI ] =
0 0 0 0 0 0
0 0 0 C1313 0 0 (6)

0 0 0 0 C1313 0
0 0 0 0 0 1/2(CIII1 - CII22)

whicb bas the three independent constants Cmlt CII22 and C1313• The actual values of these
constants are derived using the same method outlined above.

The appropriate loading conditions for calculating CIIII and CII22 are shown in Fils. 4(a, b),
and those used in calculating CI313 are sbown in Figs. 4(e, f). The representative unit ceU for this
layup is shown Fig. 4(a). Since the diaaonal members are shared by two neighboring ceUs, their

-a-

-c- -d-

"~
Xl

14
L .. ,

-e- -t-

Fia. 4. The loadiaa conditions of the representative repeatiq cell for the (0". ±60') layup uaecI to
determiDe the sliffDesS coellicients of the equivalent contiDuum.
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effective cross sectional properties are half those of the chord member. With these loading
conditions, matrix structural methods are utilized again to solve for the displacements of each
individual node. Specifically, from Fig. 4(c) we obtain

and from Fig. 4(f) we get

• /(3A) _ 12y'(31.)
v v L2.!:1 = ~~_

U3 3A + I2{1
L

(l7a)

(17b)

(18)

Figure 4(b, f) display the equivalent rectangular continuum element of side dimensions
Lx Lyl3 and thickness h, subjected to normal stresses 0'" and off-plane shearing stresses, 1'\3,
respectively.

The displacements of the plate element due to the normal stress 0'1 are given by

and tbe displacement due to the off-plane shearing stress 1'\3 is given as

8 = _ 1'I3Ly3
2G\3 .

(19)

(20)

Using the relations between Cjjld and E., ". and G\3 as given in (14), equating the displacements
of the plate element with the corresponding displacements of the representative unit cell and
insuring that the total force on the unit ceO equals the total force on the plate element for each
loading condition yields

C - 3y13 EA +3y13 EI.
1111 - 4Lh Uh

C
- y3 EA _ 3y13 EI.

1122 - 4Lh Vh

(21a)

(2Ib)

(2Ic)

4. APPLICATIONS

In this section we present applications to our construction procedure as outlined in Sections
2 and 3. The models which we shall discuss constitute two-dimensional and three-dimensional
beam-like structures, respectively.

(a) Two-dimensional slrudllns: Tlte (00, 90", ± 45°) layup
The (00, 90", ± 45°) grid shown in Fig. 5 is constructed from two basic square grids

inclined at an angle of 45° and having the geometrical properties L. E. A. Iv and Iz and L\12.
Ed, Ad' ['!d' l.d' respectively.

The four independent constants for the first (i.e. 00, 90") basic square grid with respect to its
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Fig. 5. The (0", 45°, ± 90") lattice.
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local system of axis are given in (15); while those corresponding to the ± 45° square grid with
respect to its own local system of axis are

-~(Cllllh - Lv'2 h' (CII22h = 0 (22a)

(22b)

(22c)

The direction cosiDes of the local system of axis of the ± 45° grid with respect to the fixed
coordinate system of axis (X.. X2, Xl) are defined according to (4) as

XI X2 Xl

(Xih
1 1 0

";2 v'2

(X;h 1 1 0 (23)
-V2 \1'2

(Xi)2 0 0

Substituting from (15), (22) and (23) into (5) and summing the results yield the final properties of
the 0°, 90°, ± 45° layup as

(24a)

(24b)

(24c)

(24d)

(b) Three-dimensional structures: (octetruss structures)
The smallest generating (repeating) unit cell of the octetruss structure is shown in Fig. 6. It

is a diamond-like element with each of its sides having the length L and being shared by two
neighboring cells. The octetruss structure is shown in Fig. 7 with respect to the coordinate
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rrg. 6. Smallest repeatint element of the oc:tetruss structure.

Fig. 7. Three-dimensional oc:tetruss structure viewed with respect to the coordinate system of Fig. 8.

system arrangement shown in Fig. 8. For further details of the geometric characteristics of this
kind of structure the reader is referred to(l2). (n the present analysis. the octetruss structure is
considered to be composed of "beam elements." Examination of this structure reveals that it
can be constructed from the superposition of different planes. Specifically, it can be constructed
from the three repeating sets of (00, 9(0) basic planar grids having different orientation in space,
as shown in rig. 9. The stiffness coefficients for each of the (00.900) basic grid with respect to
its local system of axis are given in (15) where h now stands for the distance between the
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Fig. 8. Direction cosines of the oetetruss.

98S

First Grid

Second Grid

Third Grid

Fig. 9. The octetruss structure constructed from three basic planar (0". 90") arids viewed ill the coordinate
system of Fig. 8.

parallel (0°, 9<r) layers; its value is thus given by

L
h =y'2' (25)

The direction cosines of the local system of axis of the three basic (00, 90°) planes with respect
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to the global system of the axis of Fig. 8 are defined according to eqn (4) as (~ii,")' m = 1,2,3 by

[

1/2 1/2Y;3 y(2/3) ]
(~jj)1 = - 1/2 y(3/~) 0

- l/y2 - YO/6) VO/3)

(~jj)2 = [~ y(~/3) - y~2/3)]
o y(2/3) y1/3)

[

1/2 - 0/2y3) - Y2/3]
(~jjh = 1/2 (y3/2) 0

YO/2) - yl/6 YO/3)'

(26a)

(26b)

(26c)

Substituting from (26) into (5), using (15) and summing according to (6) yields the final
properties of the octetruss structure with respect to coordinates of Fig. 8 as

CIIII CI122 CII33 CI123 0 0
CII22 CIIII CII33 - CI123 0 0

[Cjjtl ] = CI133 CI133 C3333 0 0 0
CII23 - CII23 0 C2323 0 0

0 0 0 0 C2323 CI123

0 0 0 0 CII23 CI212

(27)

where

5y2 EA El El
CIIII =-4- V+6Y2 Tf+3Y2Lf

C - Sy2 EA _ 2y2 BI, 3~ /2 ~L
1122- 12 V t4 v r4

y2BA El
C,m=Tv-4y27!

C - 4y2 EA +8y'2 Ely
3333- 3 V L4

y2EA El EIz
Cm3 = Tv+2y2 7!+6y27!

Sy2BA Bl BIz
CI212 = 12U+ 4y2 Tf + 3y27!

(28a)

(28b)

(28c)

(28d)

(28e)

(28f)

(28g)

Notice that (27) constitutes a modification of our previously reported result in[l] which are
reflected in the appearance of the bending rigidties of the members. Notice also that there is no
change in the number of the independent constants which can also be deduced from
symmetry[l, 2]. Examination of the results (28) indicates that CI2I2 = (CIIII - C1I22)/2 and hence
the octetruss is transversely isotropic. as is expected.

Remark
By reexamining Fig. 7 we can see that the same structure can also be constructed from four
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member will be shared by two different basic grids. Since I, and Iz are the moments of inertia
of the cross section of the beam around two principal axes and since each beam is shared by
two different basic grids, we must have two sets of principal axis for each cross section; this
can only sense for circular cross-sections. Thus, constructing the properties of the octetruss
from those pertaining to four (0", ± 60") layups is restrictive in that only beams with circular
cross-section can be treated. This was actually done in[l2) and its results were found identical
to (27) and (28) when the later are also specialized to I, =I;r
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