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Abstract—Effective mechanical properties for large repetitive frame-like structures are derived using
straight forward combinations of strength of material orthogonal transformation techniques. Once the
actual structure is identified symmetry considerations are used in order to identify its independent property
constants. The actual values of these constants are constructed according to a building block format which
is carried out in the three consecutive steps: (a) All basic planar lattices are identified (b) effective
continuum properties are derived for each of these planar basic grids using matrix structural analysis
methods and (c) orthogonal transformations are finally used to determine the contribution of each basic set
to the overall effective continuum properties of the structure.

1. INTRODUCTION

In recent two papers[1,2] we introduced a straightforward construction procedure in order to
derive continuum equivalence of discrete pin jointed repetitive structures. Broadly speaking we
outlined the method as follows: Once the actual structure was specified symmetry con-
siderations were used in order to identify its independent property constants. The actual values
of these constants were constructed in accordance with a building block approach consisting of
the following three consecutive steps: (a) all sets of parallel members were identified, (b)
unidirectional “effective continuum” properties were derived for each of these sets and (c)
orthogonal transformations were finally used to determine the contribution of each set to the
overall effective continuum properties of the structure. Here the term properties is general and
includes mechanical (stiffnesses), thermal (coefficients of thermal expansions) and 'material
densities. The method was then applied to a variety of structures.

In the present paper we extend the analysis of[1,2] in order to derive the effective
properties of rigid-jointed (frame-like) repetitive structures. This differs substantially from the
truss-like structures in that we here include the influence of inplane bending rigidities to the
structure. The construction procedure will differ in that the rod’s unidirectional properties will
no longer be adequate to derive the overall properties. The fact that the individual rod in a
rigid-jointed array can resist in plane bending dictates that the smallest sub-cell of the structure
which will be used for the building block approach will no longer be unidirectional and thus
have to be two-dimensional substructures. Here the most identifiable basic two dimensional
frame structures are the (0°, 90°) and (0°, +60°) lay ups. Effective properties for the sub-cells
will be constructed using the direct analysis method which is also known by the matrix
structural analysis method (see, for example[3-5]). This method, which uses simple and
straightforward strength of material techniques, constitutes two-dimensional generalization of
the one-dimensional area weighted properties approach of[1,2). The derived effective proper-
ties for such substructures will then be used in a building block format in order to derive the
effective properties of more complicated two and three-dimensional structures. This last step
will be done by employing the orthogonal transformation. In summary we thus outline the
procedure of constructing effective properties for frame-like repetitive structures as follows.
Once the actual structure is identified symmetry considerations are used in order to identify its
independent property constants. The actual values of these constants are constructed according
to a building block format which is carried out in the three consecutive steps: (a) all basic
planar lattices are identified (b) effective continuum properties are derived for each of these
planar basic grids. Here a representative repeating cell is isolated and studied by the direct
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method noting that the effect of the joints’ rigidity is taken into consideration and (c) orthogonal
transformations are finally used to determine the contribution of each basic set to the overall
effective continuum properties of the structure.

Since the inclusion of bending rigidities do not influence the thermal expansion of the
structure, the thermal expansion properties derived in[1, 2] for the truss are identical to those of
corresponding frame. Accordingly in what follows we concentrate on deriving the elastic
properties of the frame structure.

2. ORTHOGONAL TRANSFORMATIONS

As was pointed out earlier the actual values of the total structure’s effective continuum
properties are determined from the individual contribution of each two-dimensional subset. The
individual subsets contribution of each two-dimensional subset. The individual subsets con-
tribution is obtained by a three-dimensional coordinate transformation. Before we proceed to
describe the transformation, however, we shall first state the relevant stress—strain relations of
elastic bodies.

The stress-strain relations for a general linear elastic body are written in the compact form

g = C'iiklekb iyj,kql = 1,2,3, (1)
where o;; and ¢ are the components of the stesss and strain tensors, respectively and Cjy are

the stiffness tensor of the solid.
For future format references we shall rewrite equation (1) in its expanded form

~ou™] [Cun Cum Cun Cun Cus Cun [ &n™)
o2 A Con Con Cpp Cuz Con Can 7]
oy Cin Con Cun Cun Cpi Con €y @
U] ) Con Con Cpy Cun Cpi Can 2
[4}] Con Com Con Cun Cun Con || &
Lo ] L Con Com Ciy Coy Gy Conp L€
Since Cy, is a fourth-order tensor it obeys the transformation(1, 6,7)
Citt = Clars Bpi Boj B Bsi &)
where
gy =% @

3X;

are components of the orthogonal transformation tensor which transforms the unprimed to the
primed coordinates. Accordingly, By is the cosine of the angle between the x| and the x; axis.

The relation (3) hold equally well for either continuous or discrete structures. The numerical
values of the appropriate Cy, entries will depend, however, upon the specific structure under
consideration. Since we are interested in analyzing frame-type structures that are constructed
from smaller subsets, it is expected that each subset will contribute to its overall properties.

If a structure has n different subsets then equation (3) can be written for each subset m,
m=12,...,nas

(Ciw,,) = (Cpars Byi Byj B Bu,)- 8]

Once the direction cosines of each subset are identified the sum over all of these subsets
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yield the final properties

Ciu = "'2: (Cin,,)- (6)

3. BASICPLANAR GRIDS

We shall use the “direct method” to find the properties of the equivalent continuum of two
basic planar grids. This approach is the reverse of that used by McCormick[8], McHenry[9] and
Hrennikoff [10], who describe a procedure for modeling problems in plane stress analysis with
one-dimensional elements.

The main idea behind the direct method is to equate the displacements of the nodes of the
model to the displacements of the corners of the continuum plate element under the same
loading conditions. The sign convention for the displacement and stress resultants used in the
present study are shown in sketch 1(a, b).

(a) (0°,90°) layup

We consider a plane network which is formed from a large number of orthogonally
intersecting beams rigidly jointed at their intersections as shown in Fig. 1. The beams are

v wb“

"y

a-The Beam Element in the Single-Layer Grids.

b-Equivalent Plate Sign Convention

Sketch 1. Sign convention for the displacements in the equivalent continuum plate model.

*2

Fig. 1. The (0°, 90°) lattice.
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assumed to be identical, each having the length L, the cross-sectional area A, the Youngs
modulas E and the moments of innertia I, and I, around the Y and Z axis (principal axes),
respectively. The deformation of each joint is described by the displacements u, » and w in the
X\, X; and X, directions, respectively and by the rotations 6,,, 6, and 8,; around the axis X,
X; and X;, respectively. Here the rotations are considered to be positive in the counterclock-
wise direction.

Using symmetry arguements reveal that this model is orthotropic and that a 90° rotation in
its plane will got alter its behavior[l1]. These conditions reduce its general stress-strain
relations (1) to

Clll Clln 0 0 0 0
Clln Cllll o 0 0 0
0 0 0 0 0 0
[Cw] = 0 0 0 C|3|3 0 0
0 0 0 0 C|3|3 0
0 0 0 0 0 Cun

™M

which has the four independent constants Cy,;, Cii22, Cia13 and Capa.

The actual values of these constants are derived using the direct method of analysis. This
consists of isolating the representative repeating cell, Fig. 2(a), loading it at its nodes and
equating the displacements of these nodes to the displacements of the edges of the equivalent
continuum plate under the same loading conditions. The appropriate loading conditions for
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Figs. 2(a-e).
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Fig. 2. The loading conditions of the representative repeating cell for the (0°, 90°) layup used to determine
the stiffness coeflicients of the equivalent continuum.

calculating Cy;;; and G,y are shown in Figs. 2(b, c), those pertaining to calculating Ci,;, are
shown in Fig. 2(d, e) and finally those used in calculating C3,; are shown in Figs. 2(f-h). In the
first and second loading conditions, we are dealing only with the “in-plane” displacements of
the lattice; while in the third loading condition we are calculating the “off-plane” displacement.

Since each member is shared by two neighboring cells, its effective cross sectional area and
moments of inertia must be half of the corresponding values in the original lattice. Under the
present loading conditions, matrix structural methods [3] are utilized to solve for the displac-
ments and rotations of each individual node. Specifically for Fig. 2(b), we obtain

"|=u2=u3=u4=0 (88)
v|=02=”v3=-94=—% (8b)
and from Fig. 2(d), we get
m=i=0, v=0,=0, =y (9a)
L3
Us=Uy=epr (%9b)

Similarly, the displacement in Fig. 2(h) is found to be
w, = wy = — PL}/(3ELJ2). (10)
Figures 2(c, e,f) display the equivalent square continuum element of side length L and thickness

h subjected to normal stresses, o, in-plane shearing stresses, 7,3, respectively. The displace-
ments of the plate element due to the normal stress o, are

5=k, 5=k, an
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and the one due to the in-plane shearing stress 7,5, is

53=ﬂ2£ (12)

while the displacement due the off-plane shearing stress 75 is given as

6= -112-13: (13)
1

where E, is the effective modulus of elasticity of the equivalent orthotropic continuum in the
X, and the X; direction, v, is the eflective Poisson's ratio of the continuum between the X, and
X, direction, G,; is the in-plane shear modulus and G; is the off-plane shear modulus. The
relations between Ci of eqn (7) and E,, v, Gy, and G,; are

E,= Cunll-vd), v =gia (14)
Tt
Gi2=Ci, Gi=Cpp. (14b)

By equating the displacements of the plate element with the corresponding displacements of the
representative unit cell while insuring that the total force on the unit cell equals the total force
on the plate element for each loading condition yields

AE

Cnn=ﬁ. Cun=0 (15a)

r-{"

E
h

g

Con= (15b)

h (V8]
&

Ciis= (15¢)

h

(b) (0°, =60° layups)

For the (0, =60°) layup of Fig. 3, we shall assume that all members are identical and have
the same geometrical and material properties L, A, [, I, and E. The isotropic nature of the (0,
+60°) configuration (see [2, 11]) dictates additional restrictions on the stiffnesses coefficients of

Fig. 3. (0°. *=60°) layup.



Effective constitutive relations for large repetitive frame-like structures 981
the equivalent continuum. The appropriate property matrix is

Cin Ciz 0 0 0 0
Ciz Cyn O 0 0 0
0 0 0 0 0 0
(Ci] = 0 0 0 Cun 0 0 (16)
0 0 0 0 Cin 0
0 0 0 0 0 Y2AChin - anz)

which has the three independent constants C,yy;, Ciyn and Cyapa. The actual values of these
constants are derived using the same method outlined above.

The appropriate loading conditions for calculating C;;; and Ci;5, are shown in Figs. 4(a, b),
and those used in calculating C,,; are shown in Figs. 4(e, f). The representative unit cell for this
layup is shown Fig. 4(a). Since the diagonal members are shared by two neighboring cells, their
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Fig. 4. The loading conditions of the representative repeating cell for the (0°, +60%) layup used to
determine the stiffness coefficients of the equivalent continoum.
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effective cross sectional properties are half those of the chord member. With these loading
conditions, matrix structural methods are utilized again to solve for the displacements of each
individual node. Specifically, from Fig. 4(c) we obtain

121,

) _PL (3A+——31L )

PT2E (4. 12
4(4+ 1)

VG4 121;31,1

s 3A +-1—12:{1

(17a)

(17%)

and from Fig. 4f) we get

_ PL?
w = 3 EI’. (18)
Figure 4b, f) display the equivalent rectangular continuum element of side dimensions
L x L~\/3 and thickness A, subjected to normal stresses oy, and off-plane shearing stresses, 7,3,
respectively.

The displacements of the plate element due to the normal stress ¢, are given by

ol

81— E’ 62= —\/3 V¢8| (19)

and the displacement due to the off-plane shearing stress 7,5 is given as

- _mlv3
5 T (20)

Using the relations between Cy, and E,, v, and G, as given in (14), equating the displacements
of the plate element with the corresponding displacements of the representative unit cell and
insuring that the total force on the unit cell equals the total force on the plate element for each
loading condition yields

_3V3EA 3W3EL

Cin= 4Lk + Th (21a)
3EA 33EI
CIIn:\/4Lh - \23" (Zlb)
33 EI
Coins ="\'/z171_"'- 2lc)

4. APPLICATIONS

In this section we present applications to our construction procedure as outlined in Sections
2 and 3. The models which we shall discuss constitute two-dimensional and three-dimensional
beam-like structures, respectively.

(a) Two-dimensional structures: The (0°, 90°, +45°) layup

The (0°, 90°, +45°) grid shown in Fig. § is constructed from two basic square grids
inclined at an angle of 45° and having the geometrical properties L, E, A, I, and [, and L\/2,
E,, A, L, L, respectively.

The four independent constants for the first (i.e. 0°, 90°) basic square grid with respect to its
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Fig. 5. The (0°, 45°, +90") lattice.

local system of axis are given in (15); while those corresponding to the *45° square grid with
respect to its own local system of axis are

(CIIII)2=ZE\'%¢,—I’ (Cuzh=0 (22a)
(Cunk = % (22b)
(Conh = Ei—/gz‘dﬁi (22¢)

The direction cosines of the local system of axis of the +45° grid with respect to the fixed
coordinate system of axis (X, X,, X;) are defined according to (4) as

X X, X,
' 1 1
1 1 (23)
N | ———= - 0
e DR
(X321 0 0 1

Substituting from (15), (22) and (23) into (5) and summing the results yield the final properties of
the 0°, 90°, *=45° layup as

EA E/Ay | 3E
Cllll Lh 2\/2 Lh +V3£% (248)

_ EdAd _ 3E Izd
Cin=5/11h V2 Loh (24b)

_E,A; | 6EI
2\/2Lh IT‘

_3E] 3E¢Iz§
Cl!IS— L!h +2\/2 L h (24d)

(b) Three-dimensional structures: (octetruss structures)
The smallest generating (repeating) unit cell of the octetruss structure is shown in Fig. 6. It
is a diamond-like element with each of its sides having the length L and being shared by two
neighboring cells. The octetruss structure is shown in Fig. 7 with respect to the coordinate

Cin= (240)
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Fig. 6. Smallest repeating element of the octetruss structure.
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Fig. 7. Three-dimensional octetruss structure viewed with respect to the coordinate system of Fig, 8.

system arrangement shown in Fig. 8. For further details of the geometric characteristics of this
kind of structure the reader is referred to[12]. In the present analysis, the octetruss structure is
considered to be composed of “beam elements.” Examination of this structure reveals that it
can be constructed from the superposition of different planes. Specifically, it can be constructed
from the three repeating sets of (0°, 90°) basic planar grids having different orientation in space,
as shown in Fig. 9. The stiffness coeflicients for each of the (0°, 90°) basic grid with respect to
its local system of axis are given in (15) where & now stands for the distance between the
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Fig. 8. Direction cosines of the octetruss,
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Fig. 9. The octetruss structure constructed from three basic planar ((°, 90°) grids viewed in the coordinate
system of Fig. 8.

parallel (0°, 90°) layers; its value is thus given by

=L
= (25)

The direction cosines of the local system of axis of the three basic (0°, 90°) planes with respect



986 A. H. NaYFEd and M. S. HEr7v
to the global system of the axis of Fig. 8 are defined according to eqn (4) as (8;,), m =1, 2, 3 by

1R 123 v(2[3)
(ﬂ.-,-).=[—1/z Vel o

-1V2 =V(1I6) v3) (26a)
[1 0 0 }
Bya=| 0 VU3 =3
2 0 v2i3) VI3) (26b)
112 -1nv3 -vas
Bix=| 12 (V312 0 260
V) -vie Va3

Substituting from (26) into (5), using (15) and summing according to (6) vields the final
properties of the octetruss structure with respect to coordinates of Fig. 8 as

puse aany

Cimn Ciz Cusn  Cun 0 0
Ciz Cun Cuss —Cun 0 0
[Cal=| Cuzzs Cusz G 0 0 0
Cun - Cun 0 Cun 0 0
0 0 0 0 Cos Cun
L 0 0 0 0 Ciz Cumn |
2D
where
Cin= 5\4/2 EA+6\/2—1‘+3\/2ETIf (28a)
Crn=22EL WLEL 5 EL (28b)
2EA EI
Cin=L2E3 -4 2} (280)
1EA | EI EI
Cin= 617 4# 6TA‘ (28d)
4\/2 EA
Cyss = \3/ N2 8\/12‘4E " (28¢)
2EA EL EI,
Con= l/3—'l7 +2V2 —L'I' +6v/2 ¢ (28f)
Coz = 5—}/—2%’}“\/2 %+ 3\/2%- (28g)

Notice that (27) constitutes a modification of our previously reported resuit in{1] which are
reflected in the appearance of the bending rigidties of the members. Notice also that there is no
change in the number of the independent constants which can also be deduced from
symmetry[1, 2]. Examination of the resuits (28) indicates that C,3;; = (Ciy11 — C1122)/2 and hence
the octetruss is transversely isotropic, as is expected.

Remark
By reexamining Fig. 7 we can see that the same structure can aiso be constructed from four
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member will be shared by two different basic grids. Since I, and I, are the moments of inertia
of the cross section of the beam around two principal axes and since each beam is shared by
two different basic grids, we must have two sets of principal axis for each cross section; this
can only sense for circular cross-sections. Thus, constructing the properties of the octetruss
from those pertaining to four (0°, +60°) layups is restrictive in that only beams with circular
cross-section can be treated. This was actually done in[12] and its results were found identical
to (27) and (28) when the later are also specialized to I, = L.
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